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We calculate the average resistance R(L) of lattice animals spanning L x L cells 
on the square lattice using exact and Monte Carlo methods. The dynamical 
resistivity exponent, defined as R(L)~  L ~, is found to be ~ = 1.36_+ 0.07. This 
contradicts the Alexander Orbach conjecture, which predicts ~ ~ 0.8. Our value 
for ~ differs from earlier measurements of this quantity by other methods 
yielding ~ = 1.17 _+0.05 and 1.22 • 0.08 by Havlin et al. 

KEY WORDS: Lattice animal; resistivity exponent; fractal dimension; spec- 
tral dimension. 

The Alexander-Orbach (AO) conjecture, (1) originally proposed for per- 
colation clusters, states that the spectral dimension of percolation clusters 
is 4/3 for dimensions d~> 2. This conjecture has stimulated much numerical 
calculations(2 4) of the spectral dimension of percolation clusters in two and 
three dimensions at which the largest deviations from the AO value are to 
be expected. 

The extension of the AO conjecture to other random fractals, e.g., 
lattice animals, has also been examined. ~5'6) For  lattice animals, numerical 
evidence has not been as extensive as in the case of percolation clusters, 
due to the difficulty in generating large lattice animals./6) W i l k e e t a L  Is) 

found in two dimensions the random walk dimension on lattice animals to 
be z =  2.6_+0.3. Using the relation z = ~ + ds,(7~ where ff is the resistivity 
exponent and d s is the fractal dimension, which is t.5625 here, (8) one 
obtains ff~l.0_+0.3. H a v l i n e t a l .  ~6) obtained in two dimensions z =  
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2.78 + 0.08, which gives ( = 1.22 _+ 0.08. Both of these studies were made by 
generating random walks on the lattice animals. Havlinetal. ~6) also 
measured ( by relating it to the chemical distance exponent dl by the 
equation ( =  ds/d ~, a relation based on the assumption that the loop struc- 
ture of the animals does not contribute to their resistance. Their deter- 
mination of dl to be 1.33 + 0.05 leads to ( =  1.17_+0.05. In the methods 
based on the diffusive properties on fractals using random walks as a 
probe, two sources of statistical error are involved, one coming from the 
generation of lattice animal configurations and the other from the random 
walk configurations. 

In general, diffusion problems are related to conductivity problems 
through the Einstein relation, which gives a connection between the 
conductivity and the diffusion constant. (7) Since the resistance of random 
networks can be calculated to arbitrary accuracy using relaxation methods 
such as the conjugate gradient method, m) one has a means of overcoming 
the second source of statistical error mentioned above. 

Since the resistance R(L) of a fractal with spatial extension L goes as 
R(L) ~ L% with a resistivity exponent (, it is convenient to study lattice 
animals of a fixed spatial dimension L. Therefore we study lattice animals 
in an L x L cell and consider all animals that span the cell in a specified 
direction starting from one corner of the cell. In this specified direction, if 
we number by column 1 the column to which the starting corner of the 
animal belongs, then the animal spans columns 1 to L of the cell. We 
calculate the resistance between all pairs of occupied sites of the animal in 
which one site of the pair is in column 1 and the other in column L and 
then take the average. 

For  small L, this can be done exactly. (~~ We have done this up to 
L = 5. This resistance is given by 

L x L  / L x L  

where an(L) is the number of n-site animals spanning an L x L cell in a 
specified direction, starting from one corner of the cell, and rn(L) is the 
average resistance of such animals. We give in Table I the values of an(L) 
and r,(L). The values of r,(L) are calculated with the conjugate gradient 
method m) up to an accuracy of 10 - 6  

For larger L, since the computation time required for the exact 
enumeration increases exponentially, we resort to Monte Carlo methods. 
The Monte Carlo method used here is that of Dhar and Lam. (u) This is a 
Monte Carlo version of the deterministic algorithm given in ref. 10. In the 
deterministic algorithm, the animal configurations are classified into a tree 
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Tablel.  The Number of n-Site Animals an(L) Spanning an /-xL Cell in a 
Specified Direction Starting from One Corner of the Cell and 

Their Average Resistance r.(L) 

n a~(L) r . (L )  

L ~ 3 3 1 2.00000 

4 5 2.50000 
5 16 2.79948 
6 27 2.68796 
7 24 2.58600 
8 8 1.77226 
9 1 1.25926 

L = 4  4 1 3.00000 
5 7 3.50000 
6 32 3.87630 
7 118 4.13362 
8 329 4.17990 
9 688 4.15333 

10 1062 4.07376 
l l  1171 3.90851 
12 863 3.57332 
13 388 2.99779 
14 101 2.31641 
15 15 1.83509 
16 1 1.50446 

L = 5 5 1 4.00000 
6 9 4.50000 
7 54 4.93133 
8 247 5.21137 
9 990 5.47641 

10 3419 5.60581 
11 10090 5.64545 
12 25535 5.64483 
13 55261 5.61837 
14 101259 5.56326 
15 154636 5.46895 
16 192494 5.31715 
17 189909 5.08211 
18 143296 4.72718 
19 79860 4.23997 
20 32155 3.66142 
21 9296 3.08188 
22 1917 2.58879 
23 272 2.20758 
24 24 1.91239 
25 1 1.68394 



450 Lam and H a n s e n  

structure according to their lineage, with the one-site animal forming the 
root of the tree. The exhaustive enumeration of all animals having n sites 
proceeds by a systematic exploration of the genealogical tree to height 
n -  1. In the Monte Carlo version, when a particular r-site configuration 
is first generated, one chooses to ignore it and all its descendants in 
the enumeration with probability 1--pr ,  r~>2. The probability that a 
particular r-site animal will be enumerated in a given trial is 

Pr-- FI Pi ( 2 )  
i =2  

and is the same for all configurations with the same r. The algorithm 
generates an unbiased sample of configurations. If M independent trials 
have been used in the enumeration of animal configurations in an L x L 
cell and Nn(L) is the number of realizations of n-site animals spanning the 
cell, then the quantity an(L) defined in (1) can be deduced from the 
relation 
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Man(L ) f i  pi= N,(L) (3) 
i =2  
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Plot of log R(L) versus log L. The crosses and the dots denote respectively exact and 
Monte Carlo results. 
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We have chosen p i =  (1 + i)/(4i). (1~ Then (1) can be rewritten as 

R(L) = ~ 4n- l ( l n  + n ) - i  Nn(L)r,(L)//~4"-l(1 +n) -~ N,(L) (4) 

In Fig. 1 we plot log R(L) versus log L for L up to 25. For comparison 
the results obtained by exact enumeration are also shown. We see that the 
agreement is quite good. The data fall very much on a straight line. From 
the slope we find ~ = 1.36_ 0.07. 

The spectral dimension ds is related to the resistivity exponent by (v) 

d,= 2df/(~ + df ) (5) 

where df is the fractal dimension, which is known here to be df= 1.5625. (8) 
The AO value ds = 4/3 would require ~ ~ 0.8, which is very different from 
the value determined here. Actually, the calculations in ref. 6 are already 
violations of the AO conjecture of 20-30%. The lattice animal problem 
therefore presents a much clearer violation of the AO conjecture than 
percolation clusters. 

We find surprising the difference between our result and that of 
Havlin et alJ 6) which is too large to be attributed easily to statistical errors. 
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